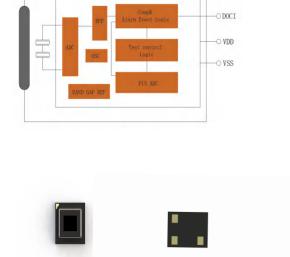
一.特性

小型 SMD 回流焊贴装方式 16位数字信号输出 单线串行数据 低电压、低功耗

二.用途

红外移动探测 物联网 可穿戴设备 智能家电、家居 智能灯具 安防、汽车防盗产品 网络监控系统等 Mini SMD Digital Pyroelectric Infrared Sensors MINI SMD 数字型热释电红外传感器


三.性能参数

参 量	符号	最 小 值	最大值	单 位	备 注
工作温度	Тот	-30	70	°C	
任何引脚极限	Into	-100	100	mA	
视野角度		X=110°	Y=90°	0	视野角度为理论数值
存储温度	Тѕт	-40	80	°C	
探测波长	λ	5	14	μM	

四.尺寸图 单位: ㎜

1. VSS 2. VDD 3. DOCI 3. DOCI 1. TS 3. DOCI 1. TS 3. DOCI 1. TS 3. DOCI 1. TS 4. TS

五.内部方框图

六、工作条件(T=25°C, V=3V,除另有规定外)

参量	符号	最小值	典型值	最大值	单位	备注
电源电压	V _{DD}	2.2	3.3	5.5	V	
工作电流	Idd	5	10	20	μД	
ADC分辨率			16		Bi ts	
振荡器和滤波器		_				
低通滤波器截止频率				7	Hz	
高通滤波器截止频率				0.44	Hz	

七、功能说明

带通滤波器:

- 1.二阶低通滤波器与三阶高通滤波器级联形成带通滤波器,滤掉信号中不希望的频率分量。
- 2.带通滤波频率: 0.44Hz~7Hz。

单线串行数据读取时序:

1.单线串行数据读取分为2种:基于传感器中断信号的读取和通过微控制器定义时序强制读取。

基于传感器中断信号的读取(时钟周期:约0.03125ms)

- 1.传感器每512个时钟周期产生一个中断有效信号,即"DOCI"脚被传感器拉高,维持2个系统时钟周期。
- 2.微控制器等待100ns后,在"DOCI"脚上产生一个上升沿,然后开始读取数据。第一个被读出数据是最高位。重复该过程直至16位数据都被读出。
- 3.最后一位数据读出后,微控制器必须强制为低且立即释放"DOCI"脚。DOCI脚"时序图如下所示。蓝线表示微控制器驱动。

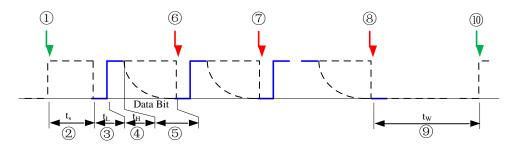


图 1 基于中断信号读取时"DOCI"脚时序

- ① "DOCI"脚接口不处于读状态且不为 1, 串行接口完成数据更新,产生中断有效信号,即传感器拉高"DOCI"脚。
- ②传感器拉高"DOCI"脚维持至少两个系统时钟周期(约 0.0625ms)。
- ③微控制器拉低"DOCI"脚至少 200ns。
- ④微控制器在 BOCI"脚上产生一个上升沿,且"DOCI"脚上高电平维持至少 200ns。
- ⑤ "DOCI"脚切换状态,输出数据的最高位 MSB。
- ⑥微控制器采样数据 MSB。
- (7)重复(3)4)5(6), 微控制器采样数据次高位。
- ⑧重复③④⑤⑥,微控制器采样数据最低位 LSB。
- ⑨读取数据完成后,微控制器强制"DOCI"脚低电平并立即释放"DOCI"脚。
- ⑩重复①,开始新的读取周期。

通过微控制器定义时序强制读取(时钟周期:约 0.03125ms)

- 1. 由于低通滤波器每32个系统时钟周期产生一个新值,高通滤波器每512个系统时钟周期产生一个新值,因此在选择读出低通滤波器值时,传感器可以接受更短的读出周期。
- 2. 在这种读出模式下,如图2所示,微控制器忽略中断信号,强制"DOCI"脚为高电平至少两个系统时钟周期,然后 开始像中断模式读出数据一样,读出数据。
- 3. 为确保输出数据锁存器被更新,微控制器必须释放"DOCI"脚(数据自动更新,同中断周期)或者强制"DOCI"脚 为低电平至少64个系统时钟周期(强制数据更新)。

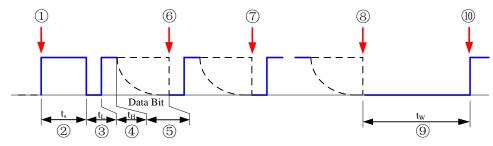


图 2 通过微控制器定义时序强制读取时"DOCI"脚时序

- ①微控制器忽略传感器中断有效信号,直接拉高"DOCI"脚。
- ②微控制器拉高"DOCI"脚维持至少两个系统时钟周期(约 0.0625ms)。
- ③微控制器拉低"DOCI"脚至少 200ns。
- ④微控制器在"DOCI"脚上产生一个上升沿,且"DOCI"脚上高电平维持至少 200ns。
- ⑤ "DOCI"脚切换状态,输出数据的最高位 MSB。
- ⑥微控制器采样数据 MSB。
- ⑦重复③④⑤⑥, 微控制器采样数据次高位。
- ⑧重复③④⑤⑥, 微控制器采样数据最低位 LSB。
- ⑨读取数据完成后,微控制器强制 "DOCI" 脚低电平并维持至少 64 个系统时钟周期,以完成串口数据更新。或者如图 2 所示,微控制器强制 "DOCI" 脚低电平并立即释放 "DOCI" 脚,按中断模式完成数据自动更新。
- ⑩重复①,开始新的读取周期。

不管采取哪种读取方式,数据读取过程可以在任意时刻终止。

如图 3 中⑦所示,在读取过程中"DOCI"脚维持低电平超过 1 个系统时钟周期,数据读取过程终止,且输出数据锁存器被更新。

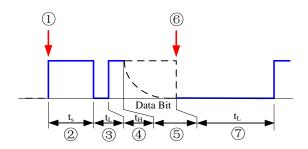


图 3 因 "DOCI" 持续维持低电平导致读取过程结束

如图 4 所示,在读取过程中,强制"DOCI"脚为高,读取过程终止,但输出数据锁存器不更新。

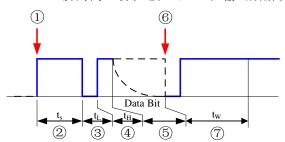
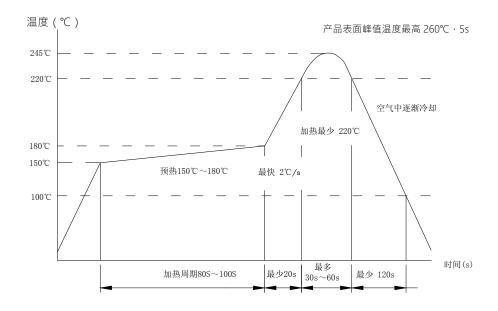


图 4 因 "DOCI" 脚强制拉高导致读取过程结束

● 数据格式:

数据值	头	码	16位数据								尾码								
数据 值	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
32767	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
32766	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
127	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
-2	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
-3	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0
-4	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
-128	1	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
-32767	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
-32768	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

八、可靠性试验


测试项目	测试标准	测试结果				
盐雾试验	GB/T 10125-2012	OK				
高温试验	100°C时,500 小时	OK				
低温试验	-40℃时·500 小时	OK				
湿度	相对湿度 95%RH 时·500 小时	OK				
耐热性	250℃时,10 秒	OK				
振动	频率变化:10Hz-55Hz·加振时间:3 轴方向 2 小	OK				
	时					
跌落	1米自由落体	OK				
气密性	水中浸泡 21kPa·1 小时	OK(不产生气泡)				

九、注 意 事 项

•回流焊接

传感器回流焊接使用说明

回流焊接时请遵循下图所示温度曲线,任何超过下图所示回流温度均需提前咨询销售工程师。

焊接注意事项:

客户根据使用的锡膏类型,合理调整回流焊温度,如高温锡膏,建议最高温度调整到260℃左右,以达到锡膏充分化锡保证焊接性。

使用手工焊接时:

对 PIR 的焊盘进行焊接时,可从 PIR 贴装板背面热风化锡后 3 秒以内完成焊接,。通过手工焊接时,温度不可控,可能会导致性能下降,因此请尽量避免。

- 1请勿反复进行回流焊焊接及反复加热拆修,会严重影响传感器寿命和性能,不属于产品质保范围。
- 2 请勿使用带有腐蚀作用的化学品清洗光学滤光片(可使用无水乙醇)·可能会导致传感器故障或失效。
- 3 请勿在传感器贴装完成后立即使用,建议 1H 后使用。
- 4 请注意避免用金属片或手等碰触端子。

◆关于传感器检测原理的说明

- 传感器是检测移动红外线变化的热释电红外传感器。
- 如检测人体以外的热源或无热源温度变化及移动的情况下,可能无法进行检测。
- 当人体做为移动探测目标时,传感器最终的感应距离与空气温度、空气湿度、菲涅尔透镜的物距及电磁环境等有关。

•人体以外的热源举例:

强光源:太阳光、汽车大灯、白炽灯等。内热源:暖气片、加热器、空调器等。动物类 热源:宠物狗、猫、家禽等小动物。

•影响检测性能的示例:

•使用环境温度(湿度)范围

- ●温度:工作温度:-30℃~+70℃(应不结雾、不结冰,温度变化可能引起灵敏度及距离变化)储存温度:-40℃~+80℃
- •湿度: 工作湿度: ≤85%RH (应不结雾,不结冰)

储存湿度:≤60%RH

• 关于使用环境温度及适应范围,是指可使传感器连续工作的温度、湿度,而非对耐久性能、耐环境性能做出的持续工作保证。在高温度、高湿度环境下使用,传感器会加速老化。

•其它注意事项

- •会因静电、雷电、手机、无线电、高强光等电热噪声产生误动作。
- •客户终端产品应安装牢固,避免风吹晃动而产生误动作。
- •会在强振动或冲击后损坏而导致产生误动作,请避免高强振动或冲击。
- •本产品并非防水、防尘产品,使用时应防水、防尘、防凝露、防结冰。
- •在工作环境中如存在腐蚀气体挥发,会产生误动作。